A self-dual Bogomol'nyi formulation of the nonlinear Schrödinger equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Self-Dual Bogomol’nyi Formulation of the Nonlinear Schrödinger Equation

We obtain a self-dual formulation of the conventional nonlinear Schrödinger equation (NLSE) in the 1+1 dimension by studying the dimensional reduction of the self-dual Chern-Simons nonlinear Schrödinger model (NLSM) in the 2+1 dimension. It is found that this self-dual formulation allows us to find not only the well-known soliton solutions from the Bogomol’nyi bound and the Galilean boost, but ...

متن کامل

Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity  

Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...

متن کامل

Self-Focusing in the Damped Nonlinear Schrödinger Equation

We analyze the effect of damping (absorption) on critical self-focusing. We identify a threshold value δth for the damping parameter δ such that when δ > δth damping arrests blowup. When δ < δth, the solution blows up at the same asymptotic rate as the undamped nonlinear Schrödinger equation.

متن کامل

Solution of a Nonlinear Schrödinger Equation

A slightly modified variant of the cubic periodic one-dimensional nonlinear Schrödinger equation is shown to be well-posed, in a relatively weak sense, in certain function spaces wider than L. Solutions are constructed as sums of infinite series of multilinear operators applied to initial data; no fixed point argument or energy inequality are used.

متن کامل

Canonical Hamiltonian formulation of the nonlinear Schrödinger equation in a one-dimensional, periodic Kerr medium.

A canonical Hamiltonian formulation of the nonlinear Schrödinger equation has been derived in this paper. This formulation governs the dynamics of pulse propagation in a one-dimensional, periodic Kerr medium when the frequency content of the pulse is sufficiently narrow relative to a carrier frequency, and sufficiently far removed from a photonic band gap of the medium. Our Hamiltonian is numer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters B

سال: 1997

ISSN: 0370-2693

DOI: 10.1016/s0370-2693(97)00519-4